• About
  • Advertise
  • Subscribe
  • Contact
  • Events
Sunday, May 18, 2025
Newsletter
SUBSCRIBE
  • News
    • Events
  • Features
  • Electricity
  • Gas
  • Renewables
    • Batteries & Storage
    • Hydro Power
    • Hydrogen
    • Solar
    • Wind
  • Smart Energy
No Results
View All Results
  • News
    • Events
  • Features
  • Electricity
  • Gas
  • Renewables
    • Batteries & Storage
    • Hydro Power
    • Hydrogen
    • Solar
    • Wind
  • Smart Energy
No Results
View All Results
Home Energy Efficiency

Report: Machine learning key to solar PV grid integration

by Lauren DeLorenzo
January 21, 2022
in Big Data, Energy Efficiency, Microgrids, Networks, News, Renewable Energy, Smart Energy, Solar, Spotlight
Reading Time: 2 mins read
A A
solar pv
Share on FacebookShare on Twitter

A recent report from the International Energy Agency (IEA) has found that machine learning algorithms and access to timely data are key to managing the increasing levels of solar PV in the energy grid.

The performance and reliability of PV electricity generation is becoming markedly more important, as the contribution of solar PV to overall electricity generation increases around the world, particularly in Australia. 

Managing the influx of solar energy into the electricity grid requires a large amount of real-time data from PV suppliers, with a high level of predictability. 

This requirement is particularly difficult to meet where there is a high percentage of PV generation from small rooftop systems, which are often not monitored. 

In addition, large PV systems are not often equipped with the level of sophisticated performance monitoring that grid managers require. 

Machine learning and other PV fault identification methods are comprehensively reviewed in a new IEA Photovoltaic Power System report, The Use of Advanced Algorithms in PV Failure Monitoring 2021. 

The report provides an introduction to PV performance monitoring and a survey of fault detection algorithms and their applications. 

The study found that the primary trends in PV system statistical performance monitoring are based on artificial intelligence (AI) principles. 

The best results come from a machine learning training strategy that uses training data based on real-time testing data. 

Dr Jonathan Dore from Ausgrid, formerly Head of Product Innovation at Solar Analytics, said, “This research provides a comprehensive analysis of failure detection methods, which can help identify underperforming systems, as the first step to rectifying faults. 

“The scale of deployment of PV now provides a wealth of data almost unimaginable when the first solar systems were deployed. 

“Such data volumes enable modern machine learning methods to compare systems to their own historical performance and to that of their neighbours, helping to discover anomalies or mild performance deficiencies that would have gone undetected in the past.” 

Related Posts via Categories

  • New program supports regional microgrid feasibility studies
  • Australia’s largest VPP grows again 
  • Top Energy stories for 2019
  • SA Virtual power plant contributes to a secure and reliable network
  • Reforms proposed to protect off-grid customers
  • New MOU for green hydrogen production plant in WA
  • $45M NT BESS reaches pre-commissioning stages
  • VIC renewable power hubs deliver regional savings
  • Stage two of Mount Isa Mica Creek Solar Farm announced
  • Additional $8.6 million for WA DER pilot

Related Posts

Marinus Link Stage 1

Milestone contract signed for Marinus Link

by Sarah MacNamara
May 14, 2025

Marinus Link Stage 1 is powering ahead, with Marinus Link Pty Ltd (MLPL) signing an agreement with global science-based consultancy...

Image: SEC Victoria

Renewable careers on display at SEC energy hub

by Sarah MacNamara
May 14, 2025

A group of high school students from Melbourne’s north west have been able to peek behind the curtain at a...

Tarong North Power Station overhaul begins

Major Qld power station overhaul commences

by Sarah MacNamara
May 14, 2025

Stanwell has kicked off a $70 million planned overhaul of Tarong North Power Station, which aims to ensure that Stanwell...

Read our magazine

Join our newsletter

View our privacy policy, collection notice and terms and conditions to understand how we use your personal information.
Energy is a thought-leading, technology-neutral magazine, developed to help the industry answer some of the Energy sector critical questions it is currently grappling with.

Subscribe to our newsletter

View our privacy policy, collection notice and terms and conditions to understand how we use your personal information.

About Energy

  • About
  • Advertise
  • Subscribe
  • Events
  • Contact
  • Digital Magazine
  • Terms & Conditions
  • Privacy Collection Notice
  • Privacy Policy

Popular Topics

  • News
  • Spotlight
  • Renewable Energy
  • Electricity
  • Projects
  • Networks
  • Sustainability
  • Gas

© 2025 All Rights Reserved. All content published on this site is the property of Prime Creative Media. Unauthorised reproduction is prohibited

No Results
View All Results
NEWSLETTER
SUBSCRIBE
  • News
    • Events
  • Features
  • Electricity
  • Gas
  • Renewables
    • Batteries & Storage
    • Hydro Power
    • Hydrogen
    • Solar
    • Wind
  • Smart Energy
  • About
  • Advertise
  • Subscribe
  • Contact
  • Events
  • Newsletter

© 2025 All Rights Reserved. All content published on this site is the property of Prime Creative Media. Unauthorised reproduction is prohibited